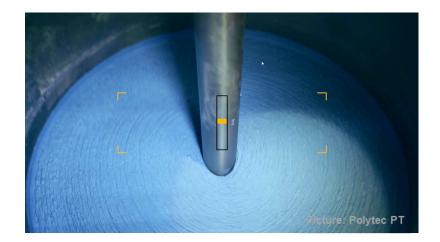

Thermal Interface Materials for batteries – challenges and solutions

A. Wiessler, Polytec PT GmbH – E-Mobility Workshop, Darmstadt, 12.11.2019

Outline

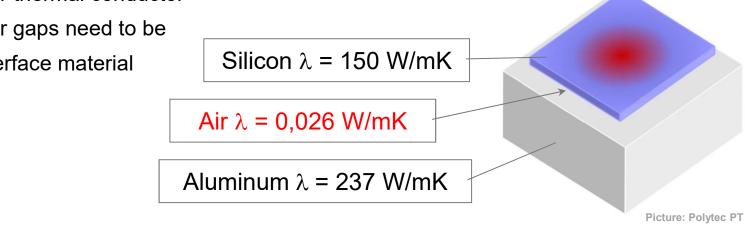

Motivation

- Why Thermal Interface Materials (TIMs)?
- Selection of TIMs based on performance and process parameters
- Methods for testing and assessing TIMs
- Outlook ongoing R&D goals

About Polytec PT

- Development & manufacturing of specialty adhesives and Thermal Interface Materials
- Customer-specific formulations
- since 2012: serial supply of a thermally conductive adhesive for hybrid batteries
- Since 2015: New development of gapfillers for numerous battery projects
- 2019: SOP of several gapfiller & adhesive projects

Why thermal management in EV-Batteries?

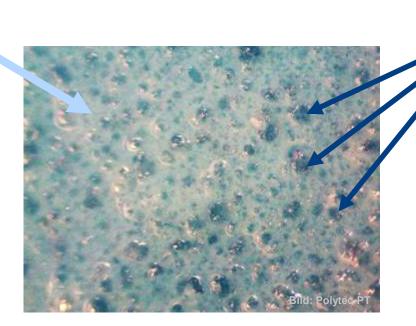

- Electrical performance depends on operating temperature
- Li-lon cells degrade when exposed to too high temperatures
- Typical requirements for operating conditions:
 - Operating temperature ideally at 30-40° C
 - Cell temperature never above 80° C
 - Charging/Discharging only between 0 and 60° C

Lit.: Thomas Wetzel – Thermisches Design von Lithium-Ionen-Batteriezellen, KIT Institut für thermische Verfahrenstechnik, 2010

Picture: Wikipedia/Heatlord, CC BY-SA 3.0

Why Thermal Interface Materialis (TIMs)?

- Active components (battery cells, semiconductors etc.) generate heat losses
- Mechanical connection with cooling structures feature small air gaps
- Air is a very poor thermal conductor
- Consequently air gaps need to be filled with an interface material



What is a TIM at all?

Organic Matrix

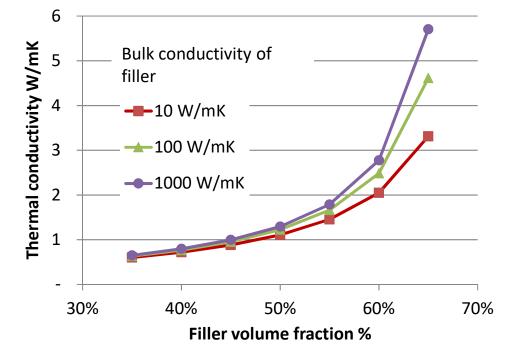
- Oil
- Polymer
- Adhesive

0,2 - 0,3 W/mK

Thermally conductive fillers • Ceramics • Metals • Graphite

> 30 -> 300 W/mK for the bulk material

Modeling of thermal conductivity


Lewis-Nielsen model

$$\lambda_C = \lambda_M \cdot \frac{1 + (A - 1)B\phi}{1 - \psi B\phi}$$

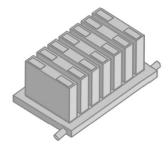
1.) Volume fraction of the filler (ϕ)

- 2.) Conductivity of the matrix (λ_M)
- 3.) Maximum packing density (Ψ)
- 4.) Particle shape factor (A)
- 5.) Filler conductivity (determines *B*)

Lit.: T. B. Lewis, L. E. Nielsen, Journal of Applied Polymer Science, Volume 14, Issue 6, pages 1449–1471, June 1970

Types of Thermal Interface Materials

	Conductive Pads	Conductive Pastes	Conductive Adhesives	Gapfillers	Speciality: PCM*
Chemically curing	No	No	Yes	Yes	No
Reworkable	Yes	Yes	No	Yes	Yes
Advantages	Pre-fabricated "Part"-character	Ease of use	Mechanical and thermal connection	Broad range of material properties	Latent-heat storage
Short- comings	Difficult to automate Compressive force necessary	Suitability depending on installation situation Only high viscosity grades	Limited conductivity Curing time needed	Curing time needed	Mostly available as pads


· www.polytec-pt.com

*:phase change material 8

Examples for Thermal Interface Materials

Thermally conductive epoxies for bonding prismatic Li-lon cells to cooler

Thermally conductive paste/gapfiller for thermal connection of battery modules to cooling structure

Fundamental properties of TIMs

📥 Polytec PT

Material properties

- Composition (Silicone yes/no)
- Consistency
- Density
- Flame retardancy

Process properties

- Shelf life
- Viscosity, flow properties
- Metering / dispensing poperties
- Abrasiveness

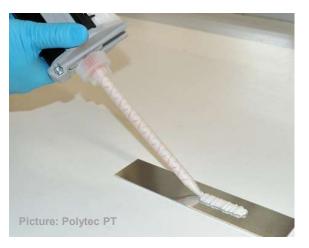
Operation properties

- Thermal conductivity
- Insulation properties
- Adhesion
- Elasticity
- Long-term properties
 - Temperature resistance
 - Chemical resistance
 - Vibration resistance

Example 1: thermally conductive adhesives

Feature	Range of values	
Consistency	Self levelling pasty	
Curing conditions	24 h/23 °C … 60 min/80 °C	
Therm. conductivity	0,8 2 W/mK*	
Density	1,5 2 g/cm²	
Modulus	100 … 9.000 MPa	
Lap sheer strength**	5 … 15 MPa	
Elongation at break	up to ~20 %	

* Up to 3 W/mK upon request (with compromises regarding mechanical properties) ** on untreated aluminum


Example 2: thermally conductive pastes

Feature	Range of values	
Konsistenz	pasty	
Viscosity at 40 °C	150 250 Pa s	
Gap dimensions	0,2 2 mm	and and a second s
Curing	Non-curing	
Therm. conductivity	2,0 2,7 W/mK	
Density	~2 g/cm³	Bud Atlas Copco

Example 3: thermally conductive gapfillers

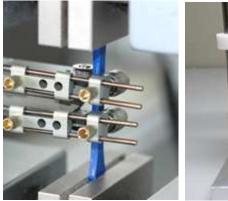
Feature	Range of values
Consistency	Self-levelling pasty
Viscosity at 23 °C	50 … 250 Pa s
Gap dimensions	0,2 5 mm
Curing	Curing at RT
Therm. conductivity	1,5 3,2 W/mK
Density	2,03,1 g/cm³

Vötsch

Jilo. At

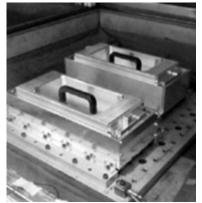
Testing of long-term properties of TIMs

- Accelerated ageing tests Test Methods
- Goal: Validation of vehicle life time (10-15 years)
- Temperature- & humidity storage (THT)
- Temperature-cycling / -schocks (TC)
- Combined TC und THT storage, e.g. VW PV-1200
- Vibration tests (with temperature cycling), e.g. VW 82161
- Power cycling test (PC)
- Flammability

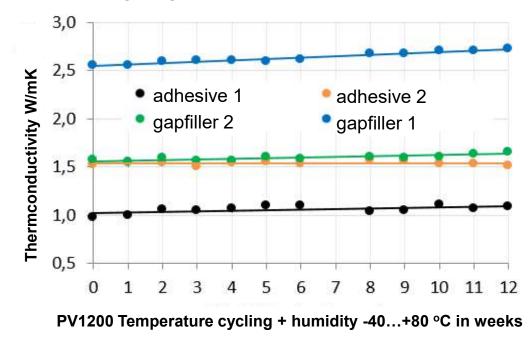

Testing of long-term properties of TIMs

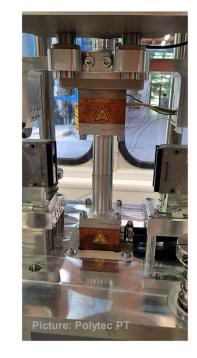
Accelerated ageing tests – Test Methods

Besides material properties and test conditions sample preparation is of essence


Bulk Material 🗧 🗲

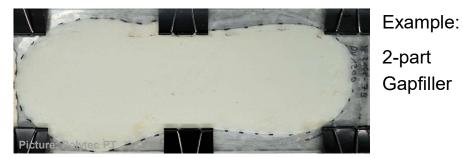
- Lab tests
- Samples in module dimensions
- ≠ Dummy Modules
- Battery & vehicletesting (OEM)




Pictures: Polytec PT

Testing of long-term properties of TIMs

Accelerated ageing tests – Test Methods



Testing of long-term properties of TIMs

- Accelerated ageing tests PV 1200
- Aluminum/glass substrate
 150 x 390 mm
- 2 mm gap
- Horizontal storage
- 2 cycles/day -40 ... +80 ° C appr. 30 ... 80 % r.F.
- Duration 12 weeks (2000 hours)
- Optical inspection

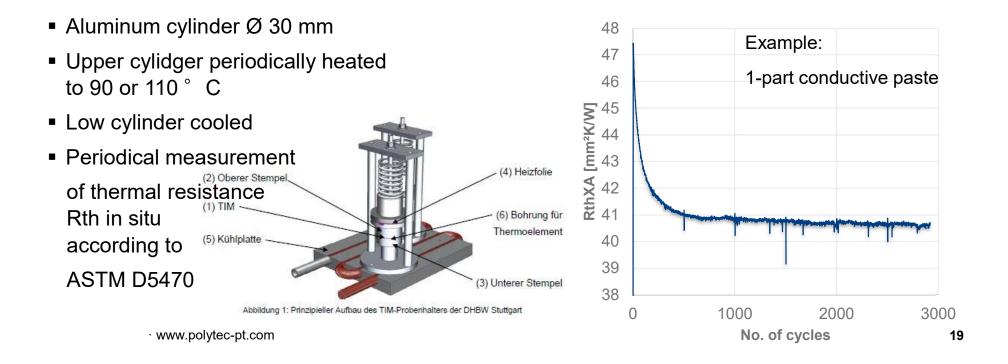
· www.polytec-pt.com

- Ok after 12 weks (2000 h)
- No crack formation oder delamination

Dismanteling

Testing of long-term properties of TIMs

- Accelerated ageing tests Vibration
- On the basis of VW 82161
- Dummy-module 150 x 390 mm
- Testing on shaker with temperature cycling at -20 ... + 65 ° C 5 ... 200 Hz
- Duration 120 h (X, Y, Z 40 h each)
- Optical Inspection


Example:

1-part conductive paste

Testing of long-term properties of TIMs

Accelerated ageing tests – Power cycling

Outlook – R&D goals

- High thermal conductivities
- Suitability for respective processes (Flowability/Compressability)
- Low manufacturing cost
- Customized mechanical properties
- Reworkability
- Customer specific requirements

Thank you very much

